

Marcela Silva Novo

Análise Numérica de Sensores Eletromagnéticos de Prospecção Petrolífera utilizando o Método dos Volumes Finitos

Tese de Doutorado

Tese apresentada ao Programa de Pós–graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica da PUC–Rio como requisito parcial para obtenção Do título de Doutor em Engenharia Elétrica

> Orientador : Prof. Luiz Costa da Silva Co-Orientador: Prof. Fernando Lisboa Teixeira

Rio de Janeiro Agosto de 2007

Marcela Silva Novo

Análise Numérica de Sensores Eletromagnéticos de Prospecção Petrolífera utilizando o Método dos Volumes Finitos

Tese apresentada ao Programa de Pós–graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC–Rio como requisito parcial para obtenção Do título de Doutor em Engenharia Elétrica. Aprovada pela Comissão Examinadora abaixo assinada.

> **Prof. Luiz Costa da Silva** Orientador Departamento de Engenharia Elétrica — PUC-Rio

Prof. Fernando Lisboa Teixeira Co–Orientador ElectroScience Laboratory - The Ohio State University

> **Prof. Antônio Romeiro Sapienza** Departamento de Engenharia Eletrônica - UERJ

Prof. Odilon Maroja da Costa Pereira Filho Departamento de Engenharia Eletrônica - UFMG

Prof. Flávio José Vieira Hasselmann

Centro de Estudos em Telecomunicações - PUC-Rio

Prof. Luiz Alencar Reis da Silva Mello Centro de Estudos em Telecomunicações - PUC-Rio

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 31 de Agosto de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Marcela Silva Novo

Marcela Silva Novo recebeu o grau de bacharel em Engenharia de Telecomunicações pela Universidade Federal Fluminense, em julho de 2001. Em agosto de 2003, recebeu o título de mestre em ciências de Engenharia Elétrica pela Pontifícia Universidade Católica do Rio de Janeiro na área de Eletromagnetismo Aplicado. De 2005 a 2006, foi pesquisadora visitante no *ElectroScience Labotatory*, *The Ohio State University*, USA. Seus interesses de pesquisa incluem eletromagnetismo computacional e modelagem numérica para sensoriamento remoto e aplicações geofísicas. Anteriormente, trabalhou com análise numérica de dispositivos de microondas e antenas. Marcela Novo recebeu bolsas de fomento da CAPES de 2001-2007; SEG (*Society of Exploration Geophysicist*) e SPWLA (*Society of Petrophysicists and Well Log Analysts*) nos anos de 2006 e 2007. É membro do IEEE, SEG e SPWLA.

Ficha Catalográfica

Novo, Marcela Silva

Análise Numérica de Sensores Eletromagnéticos de Prospecção Petrolífera utilizando o Método dos Volumes Finitos / Marcela Silva Novo; orientador: Luiz Costa da Silva; co-orientador: Fernando Lisboa Teixeira. — Rio de Janeiro : PUC-Rio, Departamento de Engenharia Elétrica, 2007.

v., 180 f: il. ; 29,7 cm

1. Tese (doutorado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica.

Inclui referências bibliográficas.

 Engenharia Elétrica – Tese. 2. Decomposição de Helmholtz. 3. Eletromagnetismo Computacional. 4. Equações de Maxwell. 5. Ferramentas de Perfilagem Eletromagnética.
Método dos Volumes Finitos.

I. da Silva, Luiz Costa. II. Teixeira, Fernando Lisboa. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. IV. Título.

Agradecimentos

Este trabalho não poderia ter sido realizado sem o apoio e incentivo de diversas pessoas. Primeiramente, gostaria de agradecer ao meu orientador, prof. Luiz Costa da Silva, pela orientação impecável, paciente e dedicada em todas as etapas deste trabalho. O prof. Luiz é o exemplo de profissional que pretendo seguir ao longo da minha carreira. Seu apoio, orientação e amizade têm sido essenciais nos momentos mais difíceis dos últimos anos.

Estendo meus agradecimentos ao prof. Fernando Lisboa Teixeira, coorientador desta tese, pela confiança e oportunidade de trabalhar com profissionais líderes na área de eletromagnetismo computacional durante o estágio de doutorado realizado no *ElectroScience Laboratory* - *The Ohio State University*. A colaboração e orientação do prof. Fernando foram essenciais para o sucesso deste trabalho. Gostaria de ressaltar o respeito e a admiração que tenho por meus orientadores. É um privilégio trabalhar com profissionais éticos e competentes.

Agradecimentos especiais ao colega, Dr. Yik-Kiong Hue (*Pittisburgh University*), pelas discussões técnicas e por fornecer dados para comparação e validação dos resultados desta tese.

Aos colegas John Sandora, Koray Tap, Salih Yarga, Feridun Gundes, Burkay Donderici, Ryan Chilton e Niru Nahar, pelo companheirismo e apoio durante o tempo que trabalhei no *ElectroScience Laboratory*.

Aos colegas do CETUC, pelo apoio, companheirismo e colaboração durante o curso de pós-graduação na PUC-Rio.

Aos funcionários do CETUC, pelo carinho e atenção.

À PUC-Rio pela bolsa de insenção concedida para realização do curso.

À CAPES (Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior), SEG (Society of Exploration Geophysicists) e SPWLA (Society of Petrophysicists and Well Log Analysts) pelo suporte financeiro que contribuiu para a viabilização deste trabalho.

Ao OSC (*Ohio Supercomputer Center*), por fornecer recursos computacionais para simulação dos resultados obtidos nesta tese.

E finalmente, aos meus familiares, em especial à minha mãe, pelo amor, carinho e compreensão dedicados a mim durante todos estes anos.

Resumo

Novo, Marcela Silva; da Silva, Luiz Costa; Teixeira, Fernando Lisboa. Análise Numérica de Sensores Eletromagnéticos de Prospecção Petrolífera utilizando o Método dos Volumes Finitos. Rio de Janeiro, 2007. 180p. Tese de Doutorado — Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

O objetivo principal deste trabalho é o desenvolvimento de modelos computacionais para analisar a resposta eletromagnética de ferramentas de perfilagem LWD/MWD em formações geofísicas arbitrárias. Essa modelagem envolve a determinação precisa de campos eletromagnéticos em regiões tridimensionais (3D) complexas e, consequentemente, a solução de sistemas lineares não-hermitianos de larga escala. A modelagem numérica é realizada através da aplicação do método dos volumes finitos (FVM) no domínio da freqüência. Desenvolvem-se dois modelos computacionais, o primeiro válido em regiões isotrópicas e o segundo considerando a presença de anisotropias no meio. As equações de Maxwell são resolvidas através de duas formulações distintas: formulação por campos e formulação por potenciais vetor e escalar. A discretização por volumes finitos utiliza um esquema de grades entrelaçadas em coordenadas cilíndricas para evitar erros de aproximação de escada da geometria da ferramenta. Os modelos desenvolvidos incorporam quatro técnicas numéricas para aumentar a eficiência computacional e a precisão do método. As formulações por campos e por potenciais vetor e escalar são comparadas em termos da taxa de convergência e do tempo de processamento em cenários tridimensionais. Os modelos foram validados e testados em cenários tridimensionais complexos, tais como: (i) poços horizontais ou direcionais; (ii) formações não homogêneas com invasões de fluído de perfuração; (iii) formações anisotrópicas e (iv) poços excêntricos. Motivado pela flexibilidade dos modelos e pelos resultados numéricos obtidos em diferentes cenários tridimensionais, estende-se a metodologia para analisar a resposta de ferramentas LWD que empregam antenas inclinadas em relação ao eixo da ferramenta. Tais ferramentas podem prover dados com sensibilidade azimutal, assim como estimativas da anisotropia da formação, auxiliando o geodirecionamento de poços direcionais e horizontais.

Palavras-chave

Decomposição de Helmholtz. Eletromagnetismo Computacional. Equações de Maxwell. Ferramentas de Perfilagem Eletromagnética. Método dos Volumes Finitos.

Abstract

Novo, Marcela Silva; da Silva, Luiz Costa; Teixeira, Fernando Lisboa. Numerical Analysis of Electromagnetic Well-logging tools by using Finite Volume Methods. Rio de Janeiro, 2007. 180p. PhD Thesis — Department of Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

The main objective of this work is to develop computational models to analyze electromagnetic logging-while-drilling tool response in arbitrary geophysical formations. This modeling requires the determination of electromagnetic fields in three-dimensional (3-D) complex regions and consequently, the solution of large scale non-hermitian systems. The numerical modeling is done by using Finite Volume Methods (FVM) in the frequency domain. Both isotropic and anisotropic models are developed. Maxwell's equations are solved by using both the field formulation and the coupled vector-scalar potentials formulation. The proposed FVM technique utilizes an edge-based staggered-grid scheme in cylindrical coordinates to avoid staircasing errors on the tool geometry. Four numerical techniques are incorporated in the models in order to increase the computational efficiency and the accuracy of the method. The field formulation and the coupled vector-scalar potentials formulation are compared in terms of their accuracy, convergence rate, and CPU time for three-dimensional environments. The models were validated and tested in 3-D complex environments, such as: (i) horizontal and directional boreholes; (ii) multilayered geophysical formations including mud-filtrate invasions; (iii) anisotropic formations and (iv) eccentric boreholes. The methodology is extended to analyze LWD tools that are constructed with the transmitters and/or receivers tilted with respect to the axis of the drill collar. Such tools can provide improved anisotropy measurements and azimuthal sensitivity to benefit geosteering.

Keywords

Computational Electromagnetics. Decomposition. Maxwell's Equations.

Finite Volume Method. Helmholtz Well-logging tools.

Sumário

1 Introdução	14
1.1 Contexto	14
1.2 Objetivos da tese	18
1.3 Organização da tese	20
2 Ferramentas de Perfilagem LWD/MWD	? ?
2 1 Classificação e configuração básica de ferramentas LW/D/MW/D	22
2.2 Cenários de operação da ferramenta LWD/MWD	$\frac{22}{24}$
	24
3 Método dos volumes finitos em meios isotrópicos	27
3.1 Introdução	27
3.2 O método dos volumes finitos	28
3.3 Formulação por campos	29
3.3.1 Discretização dos Campos	29
3.3.2 Discretização das equações de Maxwell	32
3.4 Formulação por potenciais vetor e escalar	38
3.4.1 Decomposição de Helmholtz	38
3.4.2 Localização dos campos discretos na grade	40
3.4.3 Discretização das equações (3-31)	42
3.5 Problemas com simetria azimutal	46
3.6 Método dos volumes finitos conforme localmente	47
3.7 Simulações numéricas	49
3.7.1 Formações homogêneas	51
3.7.2 Formações não homogêneas	52
3.7.3 Formações não homogêneas com alto contraste de resistividade	52
3.7.4 Formações não homogêneas com invasão de fluído de perfuração	53
3.7.5 Ferramentas LWD de freqüências baixas	53
3.7.6 Leitos inclinados	54
3.7.7 Poços excêntricos	55
3.8 Comparação entre as formulações por campos e por potenciais	73
4 Método dos volumes finitos em meios anisotrópicos	77
4.1 Introdução	77
4.2 Tensor condutividade	78
4.3 Formulação por campos	81
4.3.1 Discretização das equações de Maxwell	82
4.4 Formulação por potenciais	87
4.4.1 Discretização das equações	88
4.5 Simulações numéricas	98
4.5.1 Formações anisotrópicas homogêneas	98
4.5.2 Leitos inclinados anisotrópicos	99
4.5.3 Efeitos do fluído de perfuração	100
4.6 Comparação entre as formulações por campos e por potenciais	101

5	Análise para antenas em espiras inclinadas em relação ao eixo da	
	ferramenta	107
5.1	Introdução	107
5.2	Fluxo de corrente através das superfícies das células duais	108
5.3	Tensão induzida nas espiras receptoras	109
5.4	Simulações numéricas	110
5.4.	1 Formações homogêneas	111
5.4.	2 Formações anisotrópicas não homogêneas	111
6	Implementação de camadas perfeitamente casadas	115
6.1	Implementação de PML em grades cilíndricas do FVM	116
6.1.	1 Problemas bidimensionais	117
6.1.	2 Problemas tridimensionais	122
7	Conclusões	124
Referências Bibliográficas		127
A	Artigos publicados	133
В	Expressões dos elementos da matriz do sistema - Modelo isotrópico - Formulação por campos	135
С	Expressões dos elementos da matriz do sistema - Modelo isotrópico - Formulação por potenciais	141
D	Expressões dos elementos da matriz do sistema - Modelo anisotrópico - Formulação por campos	152
E	Expressões dos elementos da matriz do sistema - Modelo anisotrópico - Formulação por potenciais	159

Lista de figuras

2.1 2.2	Configuração básica da ferramenta LWD. (a) ferramenta conven- cional (b) ferramenta com antenas em espiras inclinadas Sensor eletromagnético de prospecção perfurando uma formação geológica. Ponto A - perfuração vertical. Ponto B - perfuração direcional. Ponto C - perfuração horizontal.	23 25
3.1	Interior de uma célula elementar do esquema de grades entrelaçadas para a discretização espacial dos campos EM na grade cilíndrica - Eormulação por Campos	21
3.2	Exemplo do contorno ortogonal da grade cilíndrica utilizado na discretização da lei de Ampère. $E_{\rho}^{(1)} = E_{\rho(i+1/2,j,k)}; H_{\varphi}^{(1)} =$	51
	$H_{\varphi(i+1/2,j,k-1/2)}; \ H_{\varphi}^{(2)} = H_{\varphi(i+1/2,j,k+1/2)}; \ H_{z}^{(1)} = H_{z(i+1/2,j-1/2,k)};$ $H_{z}^{(2)} = H_{z(i+1/2,j+1/2,k)}.$	33
3.3	Percurso de integração envolvendo quatro células de materiais distintos	34
3.4	Exemplo do contorno ortogonal da grade cilíndrica utilizado na discretização da lei de Faraday. $H_z^{(1)} = H_{z(i+1/2,j+1/2,k)}$; $E_{\rho}^{(1)} = E_{\rho}$	01
	$E_{\varphi}^{(i,j-1/2,k+1/2)}, E_{\varphi} - E_{\varphi(i,j+1/2,k+1/2)}, E_{\varphi} - E_{\varphi(i-1/2,j,k+1/2)},$ $E_{\varphi}^{(2)} = E_{\varphi(i+1/2,j,k+1/2)}.$	37
3.5	Interior de uma célula elementar do esquema de grades entrelaçadas para a discretização espacial dos campos EM na grade cilíndrica -	41
3.6	Formulação por Potencials. Células unitárias do esquema de grades entrelaçadas utilizadas na	41
37	discretização dos campos eletromagnéticos na grade cilíndrica. Média ponderada utilizada no esquema LC-EVM	$47 \\ 48$
3.8	Configuração básica da ferramenta LWD.	50
3.9	Ilustração de uma ferramenta LWD perfurando um leito inclinado.	55
3.10	Teste de convergência - Módulo e fase do campo elétrico.	58
3.11	Taxa de amplitude e diferença de fase do sensor LWD em função da condutividade da formação.	59
3.12	Resposta elétrica do sensor LWD operando em formação não homogênea, cujas camadas inferior, intermediária e superior têm 1.0, 0.01 e 1.0 S/m, respectivamente. A camada intermediária é	
	definida de 0 a 60 polegadas.	60
3.13	Simulação por FVM em uma formação não homogênea com alto contraste de resistividade. A camada intermediária é definida de 0 a 60 polegadas. As camadas inferior, intermediária e superior têm	
	condutividades iguais a $5.0, 0.0005 = 1.0 \text{ S/m}$ respectivamente	61
3.14	Resposta elétrica do sensor LWD operando em 500 kHz em uma formação não homogenea, cujas camadas inferior, intermediária e superior tem 1.0, 0.01 e 1.0 S/m, respectivamente. A camada	01
	intermediária é definida de 0 a 60 polegadas.	62

3.15	Resposta elétrica do sensor LWD operando em 100 kHz em uma formação não homogenea, cujas camadas inferior, intermediária	
3 16	e superior tem 1.0, 0.01 e 1.0 S/m, respectivamente. A camada intermediária é definida de 0 a 60 polegadas. Simulação por EVM da resposta do sensor LWD penetrando em	63
5.10	uma formação não homogênea com alto contraste de resistividade contendo uma zona de invasão no leito. O leito é definido de 0 a	
	60 polegadas.	64
3.17	Simulação por FVM da resposta do sensor LWD penetrando em uma formação não homogênea com alto contraste de resistividade contendo uma zona de invasão no leito. O leito é definido de 0 a	
	60 polegadas.	65
3.18	Resposta elétrica do sensor LWD atravessando um leito inclinado com 60 polegadas de espessura. A condutividade da camada infe- rior intermediária e superior são $\sigma = 1, 0,01, e, 1, S/m$ respectiva-	
	mente.	66
3.19	Vista superior da seção transversal de um poço excêntrico. Δx representa o deslocamento do mandril.	67
3.20	Distribuição de condutividade na seção transversal de um poço excêntrico.	67
3.21	Resposta elétrica do sensor LWD em um poço excêntrico. O poço tem 12 polegadas de raio e é preenchido por um fluído a base de	
	óleo com condutividade igual a 10 S/m.	68
3.22	Distribuição de campo elétrico (componente φ) no plano xy da grade cilíndrica.	69
3.23	Resposta eletrica do sensor LWD em um poço excentrico. O poço tem 12 polegadas de raio e é preenchido por um fluído a base de óleo com condutividade igual a 5×10^{-4} S/m.	70
3.24	Efeitos da excentricidade e do tamanho do poço na resposta do sensor LWD.	71
3.25	Taxa de amplitude e diferença de fase do sensor LWD operando em	
	um poço excêntrico em função do raio do poço.	72
4.1	Relações geométricas entre os sistemas de coordenadas da	
	anisotropia (x', y', z') e o sistemas de coordenadas da ferramenta (x, y, z)	70
4.2	Geometria da grade entrelaçada utilizada para aproximar $E_{o(i+1/2, j,k)}$, $E_{io(i+1/2, j,k)}$ e $E_{z(i+1/2, j,k)}$ no ponto $(i+1/2, j,k)$.	15
	$E_{\rho}^{(1)} = E_{\rho(i+1/2,j,k)}; E_{\varphi}^{(1)} = E_{\varphi(i,j-1/2,k)}; E_{\varphi}^{(2)} = E_{\varphi(i,j+1/2,k)};$	
	$E_{\varphi} = E_{\varphi(i+1,j-1/2,k)}, E_{\varphi} = E_{\varphi(i+1,j+1/2,k)}, E_{z} = E_{z(i,j,k-1/2)},$ $E_{z}^{(2)} = E_{z(i,j,k+1/2)}; E_{z}^{(3)} = E_{z(i+1,j,k-1/2)}; E_{z}^{(4)} = E_{z(i+1,j,k+1/2)}.$	83
4.3	Geometria da grade entrelaçada utilizada para aproximar $A_{\rho(i+1/2,j,k)}$, $A_{\varphi(i+1/2,j,k)}$ e $A_{z(i+1/2,j,k)}$ no ponto $(i+1/2,j,k)$.	
	$A_{\varphi}^{(i)} = A_{\rho(i+1/2,j,k)}; \ A_{\varphi}^{(i)} = A_{\varphi(i,j-1/2,k)}; \ A_{\varphi}^{(i)} = A_{\varphi(i,j+1/2,k)}; A_{\varphi}^{(3)} = A_{\varphi(i+1,j-1/2,k)}; \ A_{\varphi}^{(4)} = A_{\varphi(i+1,j+1/2,k)}; \ A_{z}^{(1)} = A_{z(i,j,k-1/2)};$	
	$A_z^{(2)} = A_{z(i,j,k+1/2)}; \ A_z^{(3)} = A_{z(i+1,j,k-1/2)}; \ A_z^{(4)} = A_{z(i+1,j,k+1/2)}.$	90

PUC-Rio - Certificação Digital Nº 0321246/CA

90

ΔΔ	Geometria da grade entrelaçada utilizada para aproximar $\left/\frac{1}{2}\frac{\partial\phi}{\partial\phi}\right\rangle$	
т.т	e $\langle \frac{\partial \phi}{\partial z} \rangle$ no ponto $(i+1/2,j,k)$. $\phi^{(1)} = \phi_{(i,j-1,k)}$; $\phi^{(2)} = \phi_{(i,j,k)}$; $\phi^{(3)} = \phi_{(i,j+1,k)}$; $\phi^{(4)} = \phi_{(i+1,j-1,k)}$; $\phi^{(5)} = \phi_{(i+1,j,k)}$; $\phi^{(6)} = \phi_{(i+1,j+1,k)}$; $\phi^{(7)} = \phi_{(i,j,k-1)}$; $\phi^{(8)} = \phi_{(i,j,k+1)}$; $\phi^{(9)} = \phi_{(i+1,j,k-1)}$; $\phi^{(10)} = \phi_{(i+1,j,k+1)}$.	91
4.5	Simulação da resposta do sensor LWD atravessando um leito incli- nado anisotrópico com espessura de 60 polegadas e condutividades perpendicular e paralela iguais a $\sigma_{\perp} = 0,01$ S/m e $\sigma_{\parallel} = 0,1$ S/m, respectivamente. O poço é preenchido por um fluído cuja condu- tividade é igual a 5×10^{-4} S/m.	104
4.6	Efeito do fluído de perfuração em formações anisotrópicas ho- mogêneas. A condutividade perpendicular da formação é igual a $\sigma = 0.5 \text{ S/m}$	105
4.7	$\sigma_{\perp} = 0.5$ S/m. Efeito do fluído de perfuração em formações anisotrópicas ho- mogêneas. A condutividade perpendicular da formação é igual a $\sigma_{\perp} = 10$ S/m.	105
		200
5.1 5.2 5.3	Geometria da antena em espiras inclinadas. Configuração básica da ferramenta LWD direcional. Formação anisotrópica não homogênea. Neste exemplo, a condu- tividade perpendicular de todas as camadas é igual a $\sigma_{\perp} = 0,5$	108 110
	S/m. A ferramenta LWD convencional pode errar na avaliação deste	110
54	tipo de formação. Resposta elétrica da ferramenta LWD direcional em uma formação	112
5.1	homogênea.	113
5.5	Resposta elétrica da ferramenta LWD direcional em uma formação anisotrópica homogênea. Neste exemplo, a condutividade perpendicular de todas as camadas é igual a $\sigma_{\perp} = 0,5$ S/m.	114
C 1		110
0.1 6.2	Geometria do problema bidimensional para aplicação de PML. Distribuição do compo elétrico ao longo da direção logitudinal	118
0.2	Região cilíndrica sem perdas. O domínio em z é terminado por	
	4 camadas de PML.	119
6.3	Coeficiente de reflexão numérico versus coeficiente de reflexão	
C A	teórico, para m=1, 2, 3 e 4.	120
6.4	Loeticiente de refexao numerico versus coeficiente de refexao	191
6.5	Distribuição do campo elétrico ao longo da direcão logitudinal.	141
	Região cilíndrica com perdas.	122
6.6	Distribuição do campo elétrico ao longo da direção longitudinal.	
	Região cilíndrica com perdas.	123

Lista de tabelas

3.1	Número de iterações dos métodos Bi-CGStab e RGMRES em	
	função da condutividade do meio.	52
3.2	Número de iterações e tempo de processamento dos métodos Bi-	- 0
2.2	CGStab e RGMRES em função do deslocamento do mandril.	56
3.3	Número de iterações e tempo de processamento em função da	
2.4	frequencia - Formulação por Campos e por Potenciais.	74
3.4	Numero de iterações e tempo de processamento em função da	⊢ 4
ЭΓ	profundidade - Formulação por Campos e por Potenciais - $(\theta = 45^{\circ})$	<i>(</i> 4
3.5	Numero de Iterações e tempo de processamento em função do	75
26	angulo de inclinação - Formulação por Campos e por Potenciais.	()
3.0	Numero de Iterações e tempo de processamento em função do	75
	desiocamento do mandrii - Formulação por Campos e por Potenciais.	19
4.1	Taxa de Amplitude em função da taxa de anisotropia e do ângulo	
	de inclinação - Formulação por campos	99
4.2	Diferença de fase em função da taxa de anisotropia e ângulo de	
	inclinação - Formulação por campos	99
4.3	Taxa de Amplitude em função da taxa de anisotropia e do ângulo	
	de inclinação - Formulação por potenciais	99
4.4	Diferença de fase em função da taxa de anisotropia e ângulo de	
	inclinação - Formulacão por potenciais	100
4.5	Número de iterações e tempo de processamento dos métodos Bi-	
	CGStab e RGMRES em função da profundidade. ($ heta_0=30^o$)	101
4.6	Número de iterações e tempo de processamento em função da taxa	
	de anisotropia - ($ heta_0=45^o$)	102
4.7	Número de iterações e tempo de processamento em função da	
	profundidade ($ heta_0 = 30^o$)	102
4.8	Número de iterações e tempo de processamento em função do	
	ângulo de inclinação	103
61	Valores de $ E $ em cinco pontos de observação. O domínio em z é	
0.1	terminado por PMI.	121
6.2	Valores de $ E $ em cinco pontos de observação. O domínio em z é	
•	terminado por condutor elétrico perfeito.	122

If I have seen a little further, it is by standing on the shoulders of giants.

Isaac Newton, Letter to Robert Hooke, 1676.